УДК 537.534.9:621.793

ВЛИЯНИЕ ПАРАМЕТРОВ ИОННОГО ОСАЖДЕНИЯ В ИМПУЛЬСНОМ РЕЖИМЕ НА ХАРАКТЕРИСТИКИ АЛМАЗОПОДОБНОГО ПОКРЫТИЯ

В.В. Васильев, А.И. Калиниченко, В.Е. Стрельницкий

Национальный Научный Центр «Харьковский физико-технический институт» 61108, Академическая, 1, Харьков, Украина E-mail: <u>aikalinichenko@kipt.kharkov.ua</u> Received 7 September 2012, accepted 14 November 2012

Теоретически исследуется осаждение алмазоподобного покрытия в импульсном режиме, в котором осаждаемый поток ионов плазменной среды с энергией $E_0 \sim (20\div 200)$ эВ модифицируется путем наложения импульсного потенциала $U \leq 1000$ В. Показано, что внутренние напряжения в алмазоподобном покрытии (АПП) при импульсном режиме осаждения могут быть уменьшены в несколько раз без существенного уменьшения концентрации sp^3 -связанного углерода, по сравнению с АПП, полученным в стационарном режиме осаждения при энергии ионов E_0 . Предложен метод оптимизации параметров импульсного режима, основанный на анализе положения траекторий термоупругих пиков ионов на фазовой *P*,*T*-диаграмме углерода.

КЛЮЧЕВЫЕ СЛОВА: алмазоподобное покрытие, плазменно-ионное осаждение, импульсный режим осаждения, внутреннее напряжение, фазовая *P*,*T*-диаграмма углерода, нелокальный термоупругий пик иона

ВПЛИВ ПАРАМЕТРІВ ІОННОГО ОСАДЖЕННЯ В ІМПУЛЬСНОМУ РЕЖИМІ НА ХАРАКТЕРИСТИКИ АЛМАЗОПОДІБНОГО ПОКРИТТЯ

В.В. Васильєв, О.І. Калініченко, В.Є. Стрельницький Національний Науковий Центр "Харківський фізико-технічний інститут"

льнии пауковии центр "ларківський фізико-технічний ін

61108, Академічна, 1, м. Харків, Україна

Теоретично досліджується осадження алмазоподібного покриття в імпульсному режимі, у якому осаджуваний потік іонів плазмового середовища з енергією $E_0 \sim (20\div 200)$ еВ модифікується шляхом накладання імпульсного потенціалу $U \leq 1000$ В. Показано, що внутрішні напруження в алмазоподібному покритті (АПП) при імпульсному режимі осадження можуть бути зменшені в кілька разів без істотного зменшення концентрації sp^3 -зв'язаного вуглецю, у порівнянні з АПП, отриманим в стаціонарному режимі осадження при енергії іонів E_0 . Запропоновано метод оптимізації параметрів імпульсного режиму, заснований на аналізі положення траєкторій термопружних піків іонів на фазовій *P*,*T*-діаграмі вуглецю.

КЛЮЧОВІ СЛОВА: алмазоподібне покриття, плазмово-іонне осадження, імпульсний режим осадження, внутрішнє напруження, фазова *P*, *T*-діаграма вуглецю, нелокальний термопружний пік іона.

INFLUENCE OF PARAMETERS OF ION DEPOSITION IN PULSED MODE ON CHARACTERISTICS OF DIAMONDLIKE COATING

V.V. Vasylyev, A.I. Kalinichenko, V.E. Strel'nitskij

National Science Centre "Kharkov Institute of Physics and Technology"

61108, Akademicheskaya, 1, Kharkov, Ukraine

A pulsed mode of DLC coating deposition is theoretically investigated. In this mode a deposited ion flow of plasma environment with energy of $E_0 \sim (20 \div 200)$ eV is modified by superimposing of pulsed potential $U \le 1000$ V. . It was shown that intrinsic stress in a DLC coating can be decreased in several times without of essential decrease of sp^3 -bonded carbon concentration compared with DLC made in stationary mode deposition at E_0 ion energy. A method of optimization of pulsed mode parameters is proposed which is based on analysis of location of thermoelastic peaks of ions on phase *P*,*T*-diagram of carbon.

KEY WORDS: DLC coating, plasma-based ion deposition, pulsed mode deposition, intrinsic stress, phase *P*,*T*-diagram of carbon, non-local thermoelastic peak of ion

Образование тетраэдрического аморфного углерода (ta-C) при осаждении низкоэнергетических ионов C⁺ непосредственно связано с подповерхностными явлениями, происходящими вблизи траектории иона [1]. В работах [2-4] различные аспекты образования ta-C при ионной имплантации связывались с тепловыми пиками ионов – малыми областями нанометровых размеров, в которых содержалась энергия имплантируемого иона. В частности, в [4] предложена модель образования ta-C при имплантации ионов C⁺ с энергией *E* от 25 до 1000 эВ в углеродную мишень, согласно которой ta-C образуется в результате кратковременного совместного действия высоких температуры и давления в нелокальном термоупругом пике (НТП), содержащем термолизованные фононные потери энергии иона. При этом учитывалось, что давление в пике слагается из термоупругого давления, обусловленного нагревом вещества энергетическими потерями иона, деформационного давления, связанного с привнесением дополнительного объема, и внутренних напряжений в материале, возникающих в покрытии при ионной бомбардировке. Как показано экспериментально и теоретически [1,2,5], величина внутренних напряжений зависит от энергии осаждаемых ионов и температуры подложки и варьирует в пределах от ~10 ГПа до ~0,4 ГПа при изменении энергии ионов от 20 эВ до 1000 эВ. При осаждении

углеродных покрытий напряжения сжатия, с одной стороны, способствуют образованию плотной фазы осаждаемого материала, но с другой - могут приводить к отслоению покрытия от подложки [2]. В связи с этим весьма актуальна разработка методов осаждения, ограничивающих внутренние напряжения без существенного ухудшения физико-механических свойств покрытий. Одним из технологических приемов, приводящих к уменьшению внутренних напряжений, может служить осаждение покрытия, погруженного в плазму, в режиме импульсного потенциала смещения [6,7]. В этом случае стационарный процесс осаждения ионов с энергией $E_0 \sim (20 \div 200)$ эВ, чередуется с импульсным облучением ионами гораздо большей энергии $E \sim 1000$ зВ.

Целью настоящей работы является изучение термодинамических условий формирования углеродного покрытия в режиме импульсного потенциала для определения влияния параметров ионного осаждения – длительности и частоты повторения импульсов, а также энергии ионов «высокоэнергетических» импульсов - на характеристики углеродного покрытия.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ Положение НТП ионов на фазовой *Р,Т-*диаграмме углерода

Случай постоянной энергии ионов

В работе [4] был проведен расчет радиусов R(t,E), температур T(t,E) и давлений p(t,E) в НТП ионов C⁺ в тетраэдрическом аморфном углероде (ta-C), в зависимости от энергии иона и времени t с момента возникновения пика. Это позволило построить траектории пиков различных энергий на фазовой *P*, *T*- диаграмме углерода. Расположение P,T- траектории относительно границы 'алмаз - графит' принималось в качестве основного критерия возможности образования ta-C в НТП иона.

Рис. 1. Начальная локализация пиков ионов C^+ различных энергий в углеродной матрице на фазовой Р,Т-диаграмме углерода. Светлые символы \diamondsuit соответствуют случаю ненапряженной мишени; символы \blacklozenge указывают положение пиков с учетом внутренних напряжений, возникающих при осаждении ионов различных энергий в непрерывном режиме.

На рис. 1 показана начальная локализация НТП ионов C^+ различных энергий в ненапряженной углеродной матрице на фазовой Р,Т-диаграмме углерода (светлые символы \diamond). Как видно из рисунка, только пики ионов с наименьшими энергиями ($E \sim 25$ эВ) лежат в области стабильности алмаза. Согласно принятому предположению, это означает, что только ионы с такими энергиями эффективно производят sp³ – связанный углерод.

Как отмечалось во вводной части статьи, при осаждении ионов определенной энергии E в покрытии образуются напряжения сжатия σ , величина которых зависит от E [1,2]. С использованием модели НТП было получено выражение для внутренних напряжений, возникающих в осаждаемом покрытии при ионном облучении [5,8]:

$$\sigma(E) = B \frac{M}{\rho} \cdot \frac{E_Y}{1 - \Pi} \cdot \frac{E^{1/2}}{(R/j) + w(E)}, \qquad (1)$$

где R – плотность потока осаждаемых атомов, j – плотность потока бомбардирующих ионов, M – масса атома/иона, E_Y , Π и ρ - модуль Юнга, коэффициент Пуассона и массовая плотность материала покрытия, соответственно, B –

численная константа, близкая к единице. Число термоактивированных переходов w(E) в НТП с энергией активации миграции $U \sim 0,1-0,4$ эВ, в общем случае, зависит от температуры и определяется с учетом убыли дефектов за счет миграции :

$$w(E,T_0) = n_0 v \int_0^{t_c} V(t,E) e^{-\frac{U}{k_B T(t,E,T_0)} - v \int_0^{t_c} e^{-\frac{U}{k_B T(\tau,E,T_0)}} d\tau} dt , \qquad (2)$$

где n_0 и ν – объемная концентрация и частота колебаний атомов мишени, V(E,t) - объем пика, $t_c(E)=-R^2(E,0)/4\kappa$ – «время жизни» пика с начальным радиусом R(E,0), κ - коэффициент температуропроводности вещества мишени, k_B – постоянная Больцмана. Выражения (1), (2) модифицируют известную формулу Дэвиса [2], учитывая нелокальность энергетических потерь иона, температуру подложки T_0 , а также зависимость теплоемкости твердого тела от температуры. Температура T(t,E) в пике рассчитывается из уравнения [8,10]:

$$\frac{\eta(E)E}{\rho C V(E,t)} = TD\left(\frac{\theta}{T}\right) - T_0 D\left(\frac{\theta}{T_0}\right),\tag{3}$$

где $C = 3\nu_a k_B/M$ – высокотемпературный предел теплоемкости, $\eta(E)$ - доля фононных потерь иона C⁺ с

энергией Е в углеродном покрытии,

$$D(x) = \frac{3}{x^3} \int_0^x \frac{z^3 dz}{e^z - 1}$$
(4)

- функция Дебая. Объем пика задается формулой [8,10]:

$$V(E,t) = \pi \left[\frac{2}{3} R(E,t)^3 + \frac{L(E)}{2} R(E,t)^2 - \frac{1}{3} \frac{L(E)^3}{8} \right],$$
(5)

где *L(E)* – длина пробега иона C⁺ с с энергией *E* в углеродном покрытии. Радиус пика $R(E,t) = L(E)/2 + 2\sqrt{\kappa(\tau+t)}$ изменяется со временем по закону теплопроводности, где τ - время ион-ионной релаксации. Функции L(E) и $\eta(E)$ рассчитывались с помощью программного пакета SRIM2000 [9].

На рис. 2 приведена зависимость напряжений сжатия в осаждаемой пленке ta-C от энергии ионов C^+ при стационарном режиме осаждения, рассчитанная с помощью выражений (2) – (5) [5,8]. Температура подложки T_{θ} = 300 K.С учетом этих напряжений, пики ионов С⁺ занимают

осажления

на фазовой диаграмме углерода положения, показанные символами 🕈 на рис. 1. Из рисунка видно, что начальные локализации пиков сместились в сторону больших давлений, некоторые из пиков переместились в область стабильности алмаза. При этом интервал энергий ионов, производящих, в основном, sp³- связанный углерод, значительно расширился (до ~250 эВ) [4].

В режиме импульсного потенциала пленку образуют

Импульсный режим осаждения

ионы двух различных энергий. Известно, что ионы С⁺ низких энергий E₀ ≤ 100 эВ в стационарном режиме Рис. 2. Зависимость напряжений сжатия в пленке ta-С осаждают пленку ta-C с наибольшей концентрацией sp^3 – от энергии ионов С⁺ при стационарном режиме связей [1,2]. Однако низкоэнергетические ионы создают и наибольшие внутренние напряжения в покрытиях

 $\sigma_0 = (8 \div 10)$ ГПа. Назначение высокоэнергетических импульсов – уменьшать внутренние напряжения в покрытии. Как известно, осаждение постоянного потока ионов с энергией E₂ ~ 1000 эВ приводит к возникновению значительно меньших внутренних напряжений $\sigma \leq 1$ ГПа [1,2]. Однако при этом формируется, в основном, sp²- связанный углерод. Это связано с тем, что в нелокальных термоупругих пиках (НТП) ионов с такой энергией реализуются термодинамические условия, благоприятные для образования sp²- связанного углерода [4].

Рассмотрим влияние параметров импульсного режима на характеристики осаждаемого покрытия. Зависимость энергии падающих ионов от времени схематически представлена на рис. З. Длительность высокоэнергетического импульса, как правило, составляет t_p ~ (5 - 10) мкс. Длительность низкоэнергетического импульса t₀ варьирует в широких пределах, в зависимости от частоты следования высокоэнергетических импульсов $0 < f \le 1/t_p$: Плотность потока падающих ионов, определяемая скоростью продукции ионов,

 $j \sim 10^5 \text{ мA/m}^2 = 6 \cdot 10^{20} \text{ м}^{-2} \cdot \text{c}^{-1}$, принимается постоянной. В соответствии с распространенной экспериментальной методикой, будем полагать, что энергия ионов «низкоэнергетической» составляющей $E_0 = eV_f$ определяется плавающим потенциалом $V_f = (k_B T_e/e) \ln \sqrt{M/m_e} \approx 18 \text{ B}$, либо несколько превосходит эту величину. Здесь T_e – температура электронов, m_e – масса электрона. Энергия ионов

Рис. 3. Временная зависимость энергии падающих ионов

«высокоэнергетических» импульсов в настоящей работе ограничивается максимальной энергией сверху применимости модели НТП Е ≤1 КэВ. Такой режим создается подачей на подложку импульсного потенциала соответствующей амплитуды.

В импульсном режиме, когда осаждаются ионы двух различных энергий, в покрытии устанавливаются внутренние напряжения сжатия $\sigma_p(f, E)$, определяемые суммарным вкладом ионов:

$$\sigma_p(f,E) = ft_p \,\sigma(E) + (1 - ft_p) \sigma(E_0), \qquad (6)$$

105

Выражение (6), полученное в приближении бипластины с относительными толщинами слоев ft_p и $1 - ft_p$, справедливо при выполнении нескольких условий: 1) применимости модели НТП; 2) стационарности процесса установления напряжений за время импульса; 3) независимости энергии активации миграции дефектов от внутреннего давления. Выполнение этих условий позволяет использовать энергетическую зависимость (1) для внутренних напряжений $\sigma(E)$, показанную на рис. 2 [5,8].

Очевидно, что величина возникающих в импульсном режиме напряжений лежит в интервале $\sigma(E) < \sigma_p < \sigma_0$. На рис. 4 приведена зависимость внутренних напряжений σ в углеродном покрытии, осаждаемом в импульсном режиме, от частоты следования импульсов *f*. Приведены расчетные данные для трех различных энергий ионов в «высокоэнергетическом» импульсе при $E_0 = 25$ 'эВ.

Рис. 4. Зависимость внутренних напряжений σ_p от частоты следования импульсов *f*. Энергия ионов в импульсе E = 200, 400 и 1000 эВ (кривые 1, 2, 3, соответственно).

Рис. 5. Траектории пиков ионов C^+ с энергиями 25 эВ и 1000 эВ в углеродной матрице на фазовой *P*,*T*-диаграмме углерода в случаях: ненапряженной мишени (\diamondsuit); с учетом напряжений в стационарном режиме осаждении (\bigstar); с учетом напряжений в импульсном режиме осаждения (\bigstar).

Полагая $E_0 = 25$ эВ, E = 1000 эВ, получаем, что внутреннее напряжение σ_p может изменяться, в зависимости от частоты повторения импульсов f, в довольно широком диапазоне значений 0,46 ГПа $< \sigma_p < 8,6$ ГПа. Однако, при любой частоте f из разрешенного диапазона $0 \le f \le 1/t_p$ возникающие внутренние напряжения приводят к подъему пика высокоэнергетичного иона и опусканию пика низкоэнергетичного иона на фазовой P, T- диаграмме углерода. Так, на рис. 5 показано положение пиков ионов с

низкоэнергегичного иона на фазовой F, F- диаграмме углерода. Так, на рис. 5 показано положение пиков ионов с энергиями 25 эВ и 1000 эВ в ненапряженной матрице (\diamondsuit), в напряженной матрице при осаждении ионов указанных энергий в стационарном режиме (\bigstar) и при осаждении в импульсном режиме (\bigstar). Характеристики импульсного режима выбраны следующими: $t_p = 5$ мкс; $E_0 = 25$ эВ; f = 24 кГц; E = 1000 эВ.

Из рисунка видно, что, если положение пика низкоэнергетического режиме иона импульсном в изменилось незначительно (пик слегка опустился в область меньших давлений, не выходя за пределы области стабильности алмаза), то высокоэнергетический пик, напротив, существенно поднялся в область более высоких давлений, перейдя при этом из области стабильности графита область стабильности алмаза. Вследствие этого, В осаждаемые ионы высокоэнергетической фракции должны продуцировать sp³- связанный АПП углерод, как и низкоэнергетические ионы. В этом случае применение импульсного режима осаждения ионов С⁺ незначительно уменьшает эффективность образования sp³- связанного углеродного покрытия, по сравнению с осаждением ионов постоянной энергии.

Выбор оптимальных параметров импульсного режима осаждения

С увеличением частоты повторения высокоэнергетических импульсов f напряжения в осаждаемом покрытии уменьшаются (см. рис. 4). Это позволяет снижать величину остаточных напряжений в покрытии без существенного снижения эффективности образования sp3связанного углерода при условии, что начальные положения пиков ионов и их траектории на фазовой Р, Т - диаграмме не выходят за границы области стабильности алмаза. Предельный случай, соответствующий минимальным

остаточным напряжениям достигается при частоте повторения импульсов $f_m = 132 \text{ к}\Gamma \text{ ц}$ (см. рис. 6). $\sigma_{p\min} \equiv \sigma_p (f_m, 1000 \text{ yB}) = 3,2 \Gamma \Pi \text{ a}$.

При дальнейшем увеличении частоты повторения «высокоэнергетических» импульсов тепловой пик иона на фазовой диаграмме смещается вниз настолько, что часть траектории лежит в области стабильности графита. При этом внутренние напряжения в покрытии еще больше падают, однако уменьшается и эффективность образования sp³ - связанного углерода, что отражается на снижении твердости и модуля упругости покрытия.

Рис. 6. Начальные положения и *P*,*T*-траектории пиков ионов C⁺ с энергиями 25 эВ и 1000 эВ, в углеродной матрице на фазовой *P*,*T*-диаграмме углерода в случаях: ненапряженной мишени (\diamondsuit); в стационарном режиме осаждении (\blacklozenge); в импульсном режиме осаждения с частотой повторения импульсов f_p = 132 кГц (\blacktriangle).

Использование импульсного режима осаждения АПП позволяет снизить остаточные напряжения в покрытии более чем в ~2,5 раза, по сравнению с осаждением ионов с энергией $E_0 = (20 \div 40)$ эВ в стационарном режиме, когда возникают остаточные напряжения $\sigma \approx (8 \div 9) \Gamma \Pi a$. При этом эффективность образования sp³ связанного углерода существенно не изменяется.

выводы

1. Использование импульсного режима осаждения алмазоподобного покрытия позволяет значительно (в несколько раз) снизить остаточные напряжения в покрытии при сохранении эффективности образования sp^3 связанного углерода, по сравнению с осаждением ионов с энергией $E_0 = (20 \div 200)$ эВ в стационарном режиме.

2. Изучение положения траекторий пиков ионов на фазовой *P*,*T*-диаграмме углерода позволяет выбрать оптимальные характеристики импульсного режима осаждения, при которых образование *sp*³-связанного углерода происходит в нелокальных термоупругих

пиках как низкоэнергетических, так и «высокоэнергетических» ионов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Robertson J. Diamond-like amorphous carbon // Materials Science and Engineering. 2002.- Vol.R37. P. 129-281.
- 2. Davis C.A. A simple model for the formation of compressive stress in thin films by ion bombardment // Thin Solid Films. 1993. Vol.226. P. 30-34.
- Robertson J. Deposition mechanisms for promoting sp³ bonding in diamondlike carbon // Diamond and Related Materials. 1993. – Vol.2 – P. 984-989.
- Kalinichenko A.I., Strel'nitskiy V.E. Rol' termouprugikh napryazheniy v formirovanii almazopodobnogo pokrytiya pri obluchenii amorfnogo ugleroda nizkoenergeticheskimi ionami C+ // Fizika i khimiya obrabotki materialov. – 2003. - №2. -S.5-10.
- Kalinichenko A.I., Perepelkin S.S., Strel'nitskij V.E. Dependence of intrinsic stress and structure of ta-C film on ion energy and substrate temperature in model of the non-local thermoelastic peak // Diamond & Related Materials. – 2010. – Vol.19. – P. 996-998.
- 6. Sheeja D., Tay B.K., Yu L.J., Lau S.P., Sze J.Y., Cheong C.K. Effect of frequency and pulse width on the properties of ta:C films prepared by FCVA together with substrate pulse biasing // Thin Solid Films. 2002. Vol.420 –421. P. 62–69.
- Zhang Y.B., Lau S.P., Sheeja D., Tay B.K. Study of mechanical properties and stress of tetrahedral amorphous carbon films prepared by pulse biasing // Surface & Coatings Technology. - 2005. – Vol.195. – P. 338–343.
- Kalinichenko A.I., Perepelkin S.S., Strel'nitskiy V.E. Formirovanie napryazheniy szhatiya v tonkikh plenkakh pri ionnom obluchenii // Voprosy atomnoy nauki i tekhniki. Seriya: «Fizika radiatsionnykh povrezhdeniy i radiatsionnoe materialovedenie». – 2007. - № 6 - S.116-119.
- 9. Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of Ions in Solids. New York: Pergamon Press, 1996. 297 p.
- 10. Kalinichenko A.I., Perepelkin S.S., Strel'nitskij V.E. Thermodynamic conditions of ta-C formation at implantation of noblegas ions in carbon // Diamond and Related Materials. – 2006. – Vol.15, № 2-3. - P.365-370.