серія фізична «Ядра, частинки, поля», вип. 3 /25/

УДК 539.163

ТОНКАЯ СТРУКТУРА М1–РЕЗОНАНСА В ЯДРЕ ²³Na

А.С. Качан, И.В. Кургуз, И.С. Ковтуненко, В.М. Мищенко

Национальный научный центр "Харьковский физико-технический институт", 61108, Харьков, ул. Академическая 1 Поступила в редакцию 20 апреля 2004 г.

Изучен гамма-распад резонансноподобной структуры, наблюдаемой в реакции 22 Ne(p, γ) 23 Na в области энергий ускоренных протонов $E_p=0,8-2,5$ МэВ. Измерены функция возбуждения данной реакции, спектры γ -квантов, образующихся при распаде резонансов при $E_p=851,948,1278,1593,1721,1835$ кэВ, составляющих данную резонансноподобную структуру. Идентифицирован М1-резонанс на основном и первом возбужденном 440 кэВ состояниях ядра 23 Na. Положение М1-резонанса объясняется с учетом сил спаривания.

КЛЮЧЕВЫЕ СЛОВА: реакция 22 Ne(p, γ) 23 Na, M1–резонанс, M1–переход, энергия спаривания, гигантский резонанс.

В последние годы реакции неупругого рассеяния и радиационного захвата протонов начали интенсивно применяться для исследования гигантских мультипольных резонансов, расположенных наиболее низко по энергии возбуждения и поэтому попадающих в область дискретных состояний ядра [1]. Это М1-, Е2-, октупольный резонансы. Одним из наиболее интересных среди низко лежащих гигантских резонансов является М1-резонанс. Это связано с тем, что М1-переходы несут наиболее полную информацию о спиновой и изоспиновой зависимости ядерных сил [2]. В реальных ядрах М1-сила распределена по близлежащим состояниям, что позволяет изучать связь одночастичного движения с коллективным. Для ядер sd-оболочки роль коллективного движения невелика, поэтому M1-резонанс отчётливо проявляется в этих ядрах. К настоящему времени положение и тонкая структура магнитного дипольного резонанса (МДР) в чётно-чётных 4N и 4N+2n и нечётно-нечётных 4N+np ядрах sd-оболочки известны достаточно хорошо [3, 4]. Также установлено, что основной механизм, ответственный за возбуждение МДР, это переходы между спинорбитальными партнёрами [2]. Для объяснения ослабления полной силы и фрагментации МДР в этих ядрах с успехом привлекались модели Нильссона [3], оболочечная модель с конфигурационным смешиванием [4], метод Хартри-Фока [5]. Учёт влияния парных корреляций на положение и энергетически взвешенную силу гигантских мультипольных резонансов приводит к более полному согласию выводов различных теоретических моделей и экспериментальных данных [6–10].

Ранее [11–13], изучая у-распад резонансноподобных структур (РПС), наблюдающихся в реакции радиационного захвата протонов ядрами ²¹Ne, ²⁵Mg, ²⁹Si, ³³S, мы обнаружили новый экспериментальный факт, связанный с существованием триплетного спаривания между нечетными нейтроном и протоном, находящимися на одной орбите. Это проявляется в том, что положение центра тяжести (ЦТ) магнитного дипольного резонанса $(E_{\mu,r}=\Sigma_{\kappa}E_{\kappa}B_{\kappa}(M1)/\Sigma_{\kappa}B_{\kappa}(M1))$ в нечетно-нечетных 4N+пр ядрах находится на 3 МэВ ниже по энергии возбуждения, чем в четно-четных 4N ядрах и практически не зависит от A (общепринято считать, что зависимость должна быть типа Е=40А^{-1/3} [11]). В этих же работах была предложена модель для объяснения данного явления. Из этой модели следует, что нечётные ядра sd-оболочки можно разделить на две группы в зависимости от того, в каком состоянии находится нечётная частица, в d_{5/2}- или d_{3/2}-подоболочке. В первом случае положение ШТ МЛР будет находиться в области энергии возбуждения 5-6 МэВ, так как оно будет определяться только энергией спин-орбитального расшепления. Во втором случае оно будет находиться в области энергии возбуждения 8-10 МэВ, так как в этом случае в формировании МДР будут участвовать (nn-) или (pp-) пары из d_{5/2}-подоболочки. Этот вывод пока подтверждается данными опубликованных работ [13-15] (ЦТ МДР в ядрах ^{35,37}Cl, ³¹P находится при 9-10 МэВ, а в ядре ²⁷Al при 6 МэВ). Для подтверждения и дальнейшего развития модельных представлений о природе МДР и механизмах его возбуждения необходимы новые экспериментальные данные о положении, тонкой структуре и полной силе МДР в тех чётных и нечётных ядрах, в которых он еще не обнаружен.

МАТЕРИАЛЫ И МЕТОДЫ

Измерения проводили на ускорителе ЭСУ–5 ННЦ ХФТИ. Для измерения функции возбуждения применяли NaI(Tl)–детектор размерами Ø150×100 мм, который располагали на расстоянии 2 см от мишени под углом 55⁰ относительно направления пучка протонов с целью исключения зависимости эффекта углового распределения гамма-квантов на результаты измерений. Регистрировали γ -кванты с энергией $E_{\gamma}>2,6$ МэВ. Для измерения спектров γ -квантов применяли Ge(Li)–детектор объёмом 60 см³ и с разрешением 4 кэВ для $E_{\gamma}=1332$ кэВ. Наши эксперименты были выполнены на тонких изотопных мишенях (толщина мишени составляла порядка 2 кэВ для протонов с энергией 2 МэВ), приготовленных путём вбивания ионов ²²Ne в танталовые подложки непосредственно в электромагнитном сепараторе. Танталовые подложки представляли

собой диск диаметром 16 мм и толщиной 1–0,5 мм. Выбор в качестве подложки тантала обусловлен тем, что данный материал даёт незначительный фон гамма-лучей до энергии ускоренных протонов 4 МэВ. Мишени, приготовленные таким способом, удобны для длительных экспериментов, так как выдерживают высокие плотности токов на протяжении многих часов работы. Недостатком «вбитых» мишеней является то, что точно нельзя оценить число ядер в мишени, что затрудняет их применение для измерения абсолютного выхода γ -квантов.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

К настоящему времени накоплена обширная экспериментальная спектроскопическая информация о резонансных состояниях ядра ²³Na с помощью реакции радиационного захвата протонов в области энергии ускоренных протонов от 0,5 до 3,0 MэB [16–20]. Однако получить распределение вероятностей магнитных дипольных переходов на основное состояние ядра ²³Na в области энергии возбуждения 9–11 МэB ($Q_{p\gamma}$ =8794 кэB [16]) затруднительно из-за того, что данные о силах резонансов (S=(2I+1) $\Gamma_p\Gamma_{\gamma}/\Gamma$) различаются почти в два раза [16–20], и нет работы, в которой бы силы резонансов определялись во всей области энергии, где может находиться М1–резонанс. Также отсутствуют данные о силах, коэффициентах ветвления и спинах для некоторых резонансов. Наиболее интенсивные резонансы при E_p = 851, 948, 1593, 1721, 1835 кэВ составляющие РПС, распадаются преимущественно на основное состояние [19–23]. Значения спина и чётности I^π для этих резонансов известны [18] и равны I^π=5/2⁺ или 3/2⁺, т.е., это значит, что γ –переходы с резонансного на основное состояние (I^π=3/2⁺) являются М1–переходами. В связи с этим мы провели цикл измерений, связанных с идентификацией и определением положения ЦТ, тонкой структуры и полной силы МДР в ядре ²³Na.

С этой целью нами измерена функция возбуждения реакции ²²Na(p, γ)²³Na в интервале энергий протонов E_p=0,8–2,5 MэB (рис.1). В ядре ²³Na существует резонанс с E_p=1278 кэB, сила и схема распада которого хорошо известны S=21±1 эВ [16, 22], поэтому силы впервые исследуемых резонансов удобно определять из относительных измерений. Толщину мишени ξ , можно выразить через тормозную способность вещества ε : ξ =nt_M ε , где n – число атомов на 1г вещества мишени, t_M – толщина мишени в г/см².

Рис.1. Функция возбуждения реакции $^{22}Ne(p,\gamma)^{23}Na.$ $N_{\gamma}-$ выход $\gamma-$ квантов на 100 мкКл.

Подробно метод определения силы резонансов для тонкой мишени описан в [22, 23]. Силы резонансов определены из сравнения интенсивностей γ -линий от распада резонансных уровней с интенсивностью γ -линий с E_{γ} =9576 кэВ, соответствующей переходу с резонансного уровня при E_p =1278 кэВ (E^* =10016 кэВ) на состояние 440 кэВ. Детектор располагался на расстоянии 2 см от мишени под углом 55⁰. Измерения во всём энергетическом диапазоне проводили в одних и тех же экспериментальных условиях, что позволило исключить зависимость результата от угла, числа протонов, попавших на мишень, и от толщины мишени:

$$\frac{S_1}{S_2} = \frac{N_{\gamma 1} E_{\gamma 1} b_2 \eta_2}{N_{\gamma 2} E_{\gamma 2} b_1 \eta_1},$$
(1)

где N_{γ1}, N_{γ2} – выход γ-квантов (площадь под γ-линией) для первого и второго резонансов соответственно; E_{γ1}, E_{γ2} – значения резонансной энергии протонов в лабораторной системе; b₁, b₂ – коэффициенты ветвления изучаемых γ-переходов; η_1 , η_2 – абсолютная эффективность регистрации γ-квантов детектором, регистрируемых в первом и втором резонансах соответственно. Результаты настоящих измерений представлены в таблице (S_{cp} – среднее взвешенное). Коэффициенты ветвления b для данных линий хорошо известны [16].

Рис.2. Гамма–распад резонансноподобной структуры из реакции 22 Ne(p, γ) 23 Na:

а) Силы резонансов;
 б) Приведенные вероятности В(М1) с основного состояния ядра ²³Na;
 в) Приведенные вероятности В(М1) с первого возбуждённого состояния ядра ²³Na 440 кэВ.

Для удобства рассмотрения представлены только те резонансные состояния, для которых S≥1 эВ.

В результате проведенных измерений была обнаружена резонансноподобная структура (рис.2а), подобная той, которая наблюдается в ядрах ^{35,37}Cl, ²⁷Al, исследованных нами ранее [13–15]. Во всех предыдущих случаях [11–15] РПС имели сложную структуру. Состояния из этой РПС принадлежали как МДР основного состояния, так и МДР, «построенному» на возбуждённых состояниях. И только в одном случае ³⁴Cl ЦТ РПС определялся состояниями МДР на возбуждённом состоянии. Окончательный вывод о природе наблюдаемой РПС в ядре ²³Na может быть сделан после установления всех квантовых характеристик резонансных состояний, составляющих эту РПС, и изучения её γ–распада.

Известно [21 с. 124–132], что приведенную вероятность B(M1) γ -перехода можно определить через Γ_{γ} (B(M1)=0,866×10² $\Gamma_{\gamma}/E_{\gamma}^{3}$). А принимая во внимание, что S_i=(2I+1) Γ_{γ} и $\Gamma_{\gamma i}=\Gamma_{\gamma}b_{i}$, так как $\Gamma_{\gamma} <<\Gamma_{p}$, и учитывая принцип детального равновесия (B(M1)_{fi} \uparrow =[(2I_i+1)/2I_f+1]B(M1)_{if} \downarrow), можно получить:

$$B(M1)_{fi} \uparrow = \frac{86,6}{(2I_f + 1)} \frac{b_{if}S_i}{E_{\gamma_{ff}}^3} \mu_N^2, \qquad (2)$$

где і – начальное состояние (резонансное); f – конечное состояние; b_{if} – коэффициент ветвления для γ–перехода между начальным и конечным состоянием; S_i – силы резонансных состояний (S=(2I+1)4 $\pi^2 \epsilon N_{\gamma}(\pi \lambda^2 \xi N_p b \eta W(\theta))$), где ϵ – тормозная способность мишени в единицах энергии, умноженной на см²/атом; λ – длинна волны налетающей частицы; N_γ – выход гамма-квантов данной энергии; ξ – толщина мишени в единицах энергии; N_p – число протонов, попавших на мишень; b – коэффициент ветвления; η – абсолютная эффективность детектора; W(θ) – коэффициент, учитывающий эффект углового распределения гамма-квнтов.); I – спин состояния; E_{γif} – энергия γ–перехода между начальным и конечным состоянием; B(M1)_{fi} – вероятность M1–перехода из конечного состояния в начальное состояние.

В области энергий возбуждения ниже порога (р, у)-реакции выражение (2) принимает вид:

$$B(M1)_{fi} \uparrow = 0,57 \frac{(2I_i + 1)b_{if}}{(2I_f + 1)\tau_{m_i}E_{\gamma_i}^3} \mu_N^2, \qquad (3)$$

где τ_{mi} – среднее время жизни возбуждённого состояния.

При рассмотрении переходов на основное состояние выражения (2) и (3) принимают следующий вид:

$$B(M1)_{0_{i}} \uparrow = 21,65 \frac{b_{0_{i}}S_{i}}{E_{\gamma_{0_{i}}}^{3}} \mu_{N}^{2}, \qquad (4)$$

$$B(M1)_{0_{i}} \uparrow = 14,2 \frac{(2I_{i}+1)b_{0_{i}}}{\tau_{m_{i}}E_{\gamma_{0_{i}}}^{3}} \mu_{N}^{2}.$$
(5)

Выражения (4) и (5) были использованы для получения распределения вероятности магнитных дипольных үпереходов на основном состоянии. Рассчитанные вероятности ү-переходов B(M1), согласно выражениям (4) и (5), приведены на рис.26. Силы (S) резонансов при E_p= 851, 948, 1593, 1721, 1835 кэВ взяты из таблицы. Для остальных же резонансов использовались значения силы, коэффициенты ветвления и средние времена жизни из [16–18]. Для состояний, у которых известны не все квантовые характеристики, приведена оценка верхнего предела величины B(M1). Как видно из рис.26, полученное распределение имеет резонансный характер. Положение центра тяжести МДР, получено равным 5,6±0,2 МэВ.

Таблица. Силы резонансов в реакции 22 Ne(p, γ) 23 Na

Е _р (Е [*]), кэВ	$E_i^* \rightarrow E_f^*,$ кэВ	Е _γ , кэВ	b,%[16]	S, эВ	S _{cp} ,эВ	S, 9B[17]	S, эВ[19]
1278(10016)	10016→440	9576	16	_		21±1	_
851(9608)	9608→0	9608	24	14,8±1,2	13,7±0,9	12	_
	→440	9168	44	13,0±1,0	—	—	_
948(9701)	9701→0	9700	48	8,2±0,7	8,2±0,6	9,9	-
	→440	9261	30	8,2±1,3	_	Ι	-
1088(9835)	9835 →0	9835	40	5,3±0,4	4,9±0,4	4,8	3,0±1,1
	→440	9395	14	4,1±0,5	_	Ι	-
	→2391	7444	12	5,0±0,5	_		-
1593(10318)	10318→0	10318	15	7,6±0,8	7,2±0,4	10	5,2±1,8
	→440	9878	34	7,0±0,5	_		-
	→2640	7678	20	7,8±1,5	_		-
1623(10346)	10346→440	9906	28	5,3±0,4	5,2±0,4	9,1	4,9±1,8
	→2076	8270	15	4,9±0,8	_		-
1721(10440)	10440→0	10438	15	7,0±0,8	6,9±0,5	13	6,5±2,6
	→440	9998	20	7,0±0,8	_		-
	→2982	7456	36	6,7±0,8	_		-
1785(10501)	10501→0	10501	53	5,8±0,6	5,6±0,5	6,6	3,5±1,2
	→440	10061	25	5,4±0,7	_		-
1803(10519)	10519→0	10519	48	3,4±0,4	3,6±0,3	4,4	2,5±0,9
	→440	10079	28	3,9±0,5	_		-
1835(10549)	10549→0	10548	20	9,9±1,0	10,5±0,6	11	7±4
	\rightarrow 440	10108	9	10,7±1,2	_	_	_
	$\rightarrow 2391$	8157	9	10,7±0,8	_	_	_

Центр тяжести МДР на основном состоянии находится в области энергии возбуждения, ожидаемой для ядер с незаполненной d_{5/2}-подоболочкой (рис.3), т.е. определяется только энергией спин-орбитального расщепления в отличие от ядер с заполненной d_{5/2}-подоболочкой, где на положение центра тяжести М1- резонанса влияет величина nn(pp)-спаривания [13].

Как видно из рис.26, состояния РПС не принадлежат состояниям М1–резонанса на основном состоянии, поэтому был проведен дополнительный анализ с целью получения М1–распределения на первом возбуждённом состоянии E^{*}=440 кэВ. В этом случае выражения (2) и (3) принимают вид:

$$B(M1)_{1i} \uparrow = 14, 2 \frac{b_{1i}S_i}{E_{\gamma_{1i}}^3} \mu_N^2, \qquad (6)$$

$$B(M1)_{1_{i}} \uparrow = 9.5 \frac{(2I_{i} + 1)b_{1_{i}}}{\tau_{m_{i}}E_{\gamma_{i}}^{3}} \mu_{N}^{2} .$$
⁽⁷⁾

Рассчитанные вероятности B(M1), согласно выражениям (6) и (7), приведены на рис.2в. Из этого рисунка видно, что полученное распределение вероятностей магнитных дипольных *γ*-переходов на первом возбуждённом состоянии тоже имеет резонансный характер. Положение ЦТ МДР получено равным 6,0±0,3 МэВ. ЦТ МДР на первом возбуждённом состоянии отличается на 400 кэВ от ЦТ МДР на основном состоянии и соответствует гипотезе Бринка-Акселя. Как следует из гипотезы Бринка-Акселя, МДР на какомлибо возбуждённом состоянии должен находиться выше по энергии возбуждения, чем МДР на основном состоянии, на величину, равную энергии возбуждения данного уровня. Состояния РПС в ²³Na не принадлежат состояния МДР на первом возбуждённом состоянии рис.2в, поэтому необходим дальнейший анализ *γ*-переходов на высоковозбужденные состояния для определения природы состояний РПС в ²³Na.

Рис.3. Положение центра тяжести М1-резонанса в нечётных ядрах sd-оболочки. ²³Na – настоящая работа.

выводы

Изучен γ -распад резонансноподобной структуры, наблюдаемой в реакции ²²Ne(p, γ)²³Na. Измерены функция возбуждения данной реакции в интервале энергий ускоренных протонов E_p=0,8–2,5 МэB, спектры γ -квантов, образующихся при распаде резонансов при E_p= 851, 948, 1278, 1593, 1721, 1835 кэB, составляющих данную РПС.

Из анализа экспериментальных данных определены силы резонансных состояний и приведенные вероятности у– переходов.

Получено распределение вероятностей М1-переходов на основном и первом (E^* =440 кэВ) возбуждённом состояниях ядра ²³Na, которые носят резонансный характер. Положение центра тяжести МДР на основном состоянии получено равным E_0 =5,6±0,2 МэВ и находится в области энергии возбуждения, ожидаемой для ядер с незаполненной $d_{5/2}$ -подоболочкой, т. е. определяются только энергией спин-орбитального расщепления, в отличие от ядер с заполненной $d_{5/2}$ -подоболочкой, где на положение центра тяжести МДР влияет величина nn(pp)-спаривания.

Положение центра тяжести МДР на первом возбуждённом состоянии найдено равным E₁=6,0±0,3 МэВ и находится на 400 кэВ выше по энергии возбуждения, чем МДР на основном состоянии, что соответствует гипотезе Бринка-Акселя.

СПИСОК ЛИТЕРАТУРЫ

- Б.С. Ишхинов, Н.П. Юдин, Р.А. Эрамжян // Гигантские резонансы в атомных ядрах. ЭЧАЯ. 2000. Т. 32. Вып. 2. 1. C. 313.
- 2. S. Raman, L.W. Fagg, R.S. Hicks. Giant magnetic resonance In: Speth. J. Electric and magnetic giant resonances in nuclei. Singapore // World. - Scintific. - 1991. - P. 355-533. (International review of nuclear physics V.7)
- 3. L.W. Fagg Electroexitation of nuclear magnetic dipole transitons // Rev. Mod. Phys. 1975. V. 47. P. 683-694.
- 4. U.E.P. Berg, K.A. Acksermann, K. Bangert at al. Bound state M1 transitions in sd-shell nuclei // Phys. Lett. 1984. V. 140. -P. 297-322.
- 5. B. Castel, B.P. Singh, I.P. Johnstone. Occupancy of spherical shell in the ground state of even 2s-1d shell nuclei // Nucl. Phys. -1970. - V. A157. - P. 137-141.
- 6. В.Н. Ткачёв, И.Н. Бозов, С.П. Камарджиев. М1-перходы в сферических ядрах // ЯФ. 1976. Т. 24. С. 715–719.
- 7. И.Н. Борзов, В.Н. Ткачёв. Гигантские мультипольные резонансы в ядрах // Изв. АН СССР, сер. Физ. 1977. Т. 41. C. 1263-1268.
- Л.А. Малов, В.Г. Соловьёв, Ед-гигантске резонансы в деформированных ядрах // ЭЧАЯ, 1980, Т. 11, С. 301–312. 8
- 9 А.И. Вдовин, Ф.А. Гареев, С.Н. Ершов, В.Ю. Пономарёв. Влияние ядерной структуры на фактор подавления М1резонанса в (p,p')-реакции // ЯФ. - 1987. - Т. 45. - С. 388-400.
- 10. Ю.В. Гапонов, Ю.С. Лютостанский. Микроскопическое описание гамов-телеровского резонанса и коллективных изобарических 1⁺-состояний сферических ядер // ЭЧАЯ. - 1981. - Т. 12. - С. 1324-1328.
- 11. А.С. Качан, Б.А. Немашкало, В.Е. Сторижко. М1-резонанс в ядрах sd-оболочки // ЯФ. 1989. Т. 49. С. 367-371.
- 12. А.С. Качан, Б.А. Немашкало, А.Н. Водин, Р.П. Слабоспицкий. О положении М1-резонанса в нечётно-нечётном ядре ³⁴Cl // ЯФ. – 1992. – Т. 55. – С. 2321–2327.
- 13. А.С. Качан, А.Н. Водин, В.М. Мищенко, Р.П. Слабоспицкий. Тонкая структура М1-резонанса в ядре ³⁵Сl // ЯФ. 1996. - T. 59. - C. 775-779.
- 14. А.С. Качан и др. Поиск и изучение тонкой структуры M1-резонанса в ядрах ³⁷Cl и ³¹P // Изв. РАН. Сер. Физ.- 1998. -T. 62. – №1. – C. 48–53.
- 15. А.С. Качан и др. Поиск и изучение тонкой структуры M1-резонанса в ядре ²⁷A1 // Изв. РАН. Сер. Физ. 1999. Т. 63. -№5. - C. 1027-1038.
- 16. P.M. Endt. Energy levels of A = 21–44 nuclei // Nucl. Phys. 1990. V. A521. P. 65–88.
- 17. J.J.A. Smit, J.P.L. Rienecke, M.A. Meyer at al. A study of the ${}^{22}Ne(p,\gamma){}^{23}Na$ reaction in the energy region $E_p=1,1$ to 2,0 MeV // Nucl. Phys. - 1979. - V. A318. - P. 111-116.
 18. M.A. Meyer, J.J.A. Smit. The excited states of ²⁷Al // Nucl. Phys. - 1982. - V. A377. - P. 15-18.
- Z.B. Du Toit, P.R. D Kock, W.L. Mouton. Resonance strength, Branching ratios and mean lifetimes of nuclear energy levels in ²³Na // Z. Phys. 1971. V. 246. P. 170–182.
- 20. R. Vodhanel, M.K. Brussel, R. Moreh at al. Strong M1 transition in ²³Na below 10 MeV // Phys. Rev. 1984. V.C29. -P. 409-415.
- 21. О. Бор, Б. Моттельсон. Сруктура атомного ядра. М.: Мир, 1971. 456 с. 22. J. Keinonen, M. Riihonen and A. Anttila. Absolute resonance strength in the 20,21,22 Ne(p, γ) 21,22,23 Na and 21 Ne(p,p' γ) 21 Ne reaction // Phys. Rev. - 1977. - V. C15. - P. 579-586.
- 23. B.M. Paine, D.G.V. Sargood. (p,γ) resonance strength in sd shell // Nucl. Phys. 1979. V. A331. P. 389-398.

FINE STRUCTURE OF THE M1 RESONANCE IN ²³Na A.S. Kachan, I.V. Kurguz, I.S. Kovtunenko, V.M. Mischenko

National Scientific Center "Kharkov Institute of Physics and Technology", 1, Akademichna st., Kharkov, 61108

Gamma-decay of the resonance-like structure observed in the ${}^{22}Ne(p,\gamma){}^{23}Na$ reaction in the energy range $E_p=0.8-2.5$ MeV of accelerated protons was studied. Excitation function, γ -ray spectra were measured for resonances at E_p = 851, 948, 1278, 1593, 1721, 1835 keV, wich composed this resonance-like structure. The M1 resonance built on the ground state and on the excited state 440 keV of ²³Na is identified. The position and total strength of the M1 resonance on the ground state is explained by taking into account pairing forces.

KEY WORDS: the 22 Ne(p, γ) 23 Na reaction, M1 resonance, M1 transition, pairing-energy, giant resonance.